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Abstract

The minimum stiffness and optimum position of a flexible point support is calculated that raises the fundamental natural

frequency of plate structures. For a single support the maximum fundamental natural frequency of the supported structure

is equal to the second natural frequency of the unsupported structure. The structure is modelled using finite element

analysis allowing a wide range of applications and boundary conditions. If a support is positioned within a finite element

then the shape functions are used to calculate the contribution of the support to the system stiffness and also the slope of

the mode at the support. Efficient methods are used to calculate the minimum support stiffness required. Numerical results

demonstrate that a system with flexible supports may be designed with the same fundamental natural frequency as that of a

system with rigid supports. Examples of plate structures with one or two point supports are analysed and show that the

method is efficient in these cases.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The free vibration of thin plate structures with point supports has attracted significant attention from
researchers since the addition of point supports has numerous potential industrial applications. Thus far, a
vast literature exists for the analysis of the natural frequencies and mode shapes. Because the exact solution of
the transverse vibration is not readily available for a rectangular plate with point supports, a variety of
numerical approaches have been adopted to obtain the natural frequencies and mode shapes, for example by
using the Rayleigh–Ritz method [1–6], the superposition method [7,8], the finite strip method [9,10], or by
finite element analysis [11,12]. Narita [1] demonstrated that the position of a point constraint has a
considerable impact on the dynamic performance of a cantilever plate. It was observed that both the natural
frequencies and the mode shapes of the plate can be significantly affected by the position of a rigid simple
support, modelled as a point support with infinite stiffness. However, no support is absolutely rigid, and the
zero deflection of the supported point cannot be achieved physically.
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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A survey of the early literature reveals that the effect of the support stiffness on the flexural vibration of a
rectangular plate has received little attention, although the natural frequencies of plates on elastic supports
have been studied [2,10]. The lowest natural frequency of a rectangular plate may be increased to between the
first and the second natural frequencies of the original system with a simple support [13]. Won and Park [11]
showed that there exists a certain minimum support stiffness that increases the first natural frequency of the
supported structure to the second natural frequency of the unsupported structure, provided that it is
positioned appropriately. Increasing the support stiffness above this minimum value does not raise the lowest
natural frequency any further. Thus an elastic support with a finite stiffness can achieve similar results to a
rigid support when it is located optimally, and this has great potential for practical designs. More recently,
Wang et al. [14] computed the minimum stiffness and the corresponding optimal position of an intermediate
support for a uniform beam.

A rectangular plate with one boundary edge conventionally supported (either clamped or simply supported)
and others free has been an important analytical model for structural problems. When designing a support,
such as a column of a slab in civil engineering or for a circuit board in electrical engineering, to increase the
natural frequencies of a structure, the minimum stiffness and the optimal position of the support are of most
interest. In this paper, the minimum stiffness and the optimal position are calculated numerically for one or
two elastic supports lying along the free edge opposite to the restrained boundary edge of the plate. For the
rectangular plates with simply supported or clamped edges, a single support along the axis of symmetry is also
designed. Finite element analysis is used to model the plate and the minimum stiffness for a fixed location is
obtained as a solution to an eigenvalue problem. The optimal support position may be obtained where the
gradient of the fundamental mode shape at the support location is zero. The use of the finite element analysis
approach allows the design of a range of supports for general plate structures, and this is demonstrated on a
cantilever plate with a slot. Often a support will be located within an element, and in this case the stiffness
matrix of the support is obtained using the shape functions. This approach has been used previously for model
updating [15] and support optimization [12]. Damping is neglected in this study; for lightly damped structures
damping has a negligible effect on the resonance frequencies.
2. Modelling the plate and supports

Assuming that a thin plate lying in the x–y plane undergoes free vibration, there are a number of approaches
to estimate the natural frequencies and mode shapes of the structure. In the Rayleigh–Ritz approach the
transverse deflection, w(x, y), may be approximated by a general series solution of the form

wðx; yÞ ¼
XN

n¼1

qnfnðx; yÞ, (1)

where the admissible functions fn(x, y) are usually chosen to satisfy the geometric boundary conditions. The
equations of motion of the structure are obtained in terms of the unknown generalized coordinates and the
natural frequencies and mode shapes are calculated from the associated eigenvalue problem. Bhat [16],
Mundkur and Bhat [17] suggested this form of displacement model for the whole plate, although for complex
geometries suitable admissible functions are difficult to determine. Furthermore, the accuracy and
convergence of the solutions depend critically on the choice of admissible functions. The finite element
method [18] may also be written in this form where each admissible function is only defined over a single
element. This approach is considered in more detail in Section 5. However, the use of admissible functions is
convenient in this paper since the position and slopes at the support positions may be expressed easily.

The support is modelled as a single translational spring, neglecting inertia and damping effects. Since the in-
plane stiffness of the plate is relatively large, including in-plane springs in the support model will have little
effect on the lower modes of the structure. The spring model of the support assumes that the rotational
stiffness is small, and the connection to the plate is essentially pinned. Often this is a good approximation,
although the addition of rotational springs is considered later. Suppose a pinned support of translational
stiffness ks is located at (xs, ys). The term simple is used here to refer to a point support that prevents lateral
displacement but offers no resistance to the rotation of the plate about any axis. Then the potential energy of
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the support spring is given by

U ¼
1

2
kswðxs; ysÞ

2
¼

1

2
ks

XN

n¼1

qnfnðxs; ysÞ

 !2

¼
1

2
ksq

TKsq, (2)

where fqgn ¼ qn. The (m, n)th element of the stiffness matrix corresponding to the support, Ks, is

½Ks�mn ¼ fmðxs; ysÞfnðxs; ysÞ, (3)

and this stiffness matrix may be written as

Ks ¼ vvT; where fvgn ¼ fnðxs; ysÞ. (4)

Note that Ks ¼ Ksðxs; ysÞ, that is the equivalent stiffness matrix for the support is a function of the support
location. Furthermore, the stiffness matrix Ks is a dyadic (from Eq. (4)) and hence has rank one.

The eigenvalue problem for the plate supported by a single spring is given by

Kp � o2Mp þ ksKsðxs; ysÞ
� �

q ¼ 0, (5)

where q now represents the mode shape and o is the natural frequency. For multiple supports the stiffness
matrices for each support are simply added together. If the support stiffness is assumed to be identical for all
supports then the eigenvalue problem is of the form given in Eq. (5) except that the rank of Ks is now equal to
the number of supports.

The stiffness matrix of a rotational spring has a similar form. For example, the stiffness matrix of a
rotational spring about the y-axis is given by

Ks ¼ vvT; where fvgn ¼
qfn

qx
ðxs; ysÞ. (6)

Only the supports modelled using translational springs will be considered further in this paper. However the
extension to rotational springs is straight-forward based on the definition of the stiffness matrix given in
Eq. (6).

3. Requirements for an optimal support position

When a support is optimally located, it is well known that a natural frequency can be raised to a certain
value with a minimum stiffness [11,12]. To determine the optimal position of a flexible support, the sensitivity
of the natural frequency to the position of the support must be estimated. This sensitivity information allows
both the search direction and the optimal position of the support to be determined. The derivative of a natural
frequency of the plate with respect to a support position has been developed by the discrete method [12] and
the ith natural frequency of the plate is given by

qo2
i

qx

����
x¼xs
y¼ys

¼ �2kswiðxs; ysÞyyiðxs; ysÞ, (7a)

qo2
i

qy

����
x¼xs
y¼ys

¼ 2kswiðxs; ysÞyxiðxs; ysÞ, (7b)

where wiðxs; ysÞ is the transverse deflection of the associated mass normalized vibration mode, and yxiðxs; ysÞ

and yyiðxs; ysÞ are the rotations (or slopes) about the x and y axes respectively, at the support position. From
Eq. (7), to increase the first natural frequency (i ¼ 1), the optimal position of an additional support must be
located where the first mode shape of the supported structure either has a zero displacement or has zero slopes
at the support. Note that the zero displacement criterion is of little use in the current application since this
requires a rigid support or the placement of the support at a node of the mode. An alternative interpretation is
that if the structure with an elastic support has a first mode with zero slopes (or gradient) at the supported
point, then the support stiffness is the minimum required to raise the fundamental natural frequency of the
plate to the value attained [14].
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The conditions for the minimum support stiffness may be applied to the eigenvalue solutions obtained from
Eq. (5) as

yyiðxs; ysÞ ¼
qw

qx

����
x¼xs
y¼ys

¼
XN

n¼1

qn

qfn

qx

����
x¼xs
y¼ys

¼ 0, (8a)

yxiðxs; ysÞ ¼
qw

qy

����
x¼xs
y¼ys

¼
XN

n¼1

qn

qfn

qy

����
x¼xs
y¼ys

¼ 0. (8b)

4. Approaches to support optimization

The equations to estimate the natural frequencies and mode shapes for the supported plate have been
developed in Eq. (5), and conditions for the optimum support location established in Eq. (8). For each support
the quantities to be determined are the support location and stiffness. If the support location were known then
the support stiffness may be obtained using Eq. (5). The standard approach is to set up an optimization
problem to calculate the stiffness required to raise the fundamental natural frequency to the required value.
Won and Park [11] set o ¼ oi in Eq. (5) and found the support stiffness using the determinants as a solution of

det Kp � o2
i Mp þ ksKsðxs; ysÞ

� �
¼ 0. (9)

A small or zero determinant is a very poor test for singularity since there is little correlation between the
magnitude of the determinant and the condition of the corresponding set of equations [19]. The optimum
support stiffness calculated using the zero determinant as an objective function will often be inaccurate. Here
we propose to solve an eigenvalue problem directly. Suppose we want to raise the first natural frequency of the
supported plate to the second natural frequency of the unsupported plate. Then Eq. (5) becomes

Kp � o2
2Mp þ ksKsðxs; ysÞ

� �
q ¼ 0. (10)

We can regard Eq. (10) as an eigenvalue problem for ks, since the dynamic stiffness matrix of the plate,
Dp ¼ Kp � o2

2Mp, and the support stiffness matrix, Ks, are both known. The lowest non-zero eigenvalue gives
the minimum stiffness and the corresponding eigenvector, q, gives the fundamental mode shape that may be
used to compute the slope at the supports. Note that the rank of the support stiffness matrix, Ks, is equal to the
number of supports and hence there will be a significant number of infinite eigenvalues. Also the rank of the
dynamic stiffness matrix of the plate, Dp, will be one less than the number of degrees of freedom (dof) and
hence there will usually be one zero eigenvalue. Sometimes there is no value of support stiffness that will raise
the fundamental natural frequency to o2 and in this case there will be no eigenvalues that are positive, non-
zero and finite.

Won and Park [11] used matrix identities to transform the eigenvalue problem of Eq. (9) to an equivalent
problem of much smaller dimension. Suppose that the support stiffness matrix has rank M. Then Ks ¼ PPT

where P has dimensions (N,M). Suppose that Dp ¼ Kp � o2
dMp is non-singular, where od is the desired

fundamental natural frequency. Then Eq. (9) becomes [20]

det IM þ ksP
TD�1p P

h i
¼ 0, (11)

where IM is the M�M identity matrix. Notice that the determinant of a much smaller matrix is required. In
the case of a single support, so that P ¼ v, where v is the vector defined in Eq. (4), then the support stiffness
required is immediately obtained as

ks ¼ �
1

vTD�1p v
. (12)

The major difficulty with Eq. (11) is the requirement that Dp is non-singular. If the objective is to raise the
fundamental natural frequency of the supported structure to the second natural frequency of the unsupported
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structure, then Dp will be singular. Won and Park [11] solved this problem using a transformation based on the
modes of the unsupported structure, where the mode corresponding to the desired fundamental natural
frequency is not used. However this only works if the supports are located on the nodal line (line of zero
deflection) of the neglected mode. Often this is a good solution, although for general plate structures calculating
this nodal line is difficult. An alternative is to apply a shift, ks0, to the support stiffness, so that Eq. (11) becomes

det IM þ ðks � ks0ÞP
T Dp þ ks0Ks

� ��1
P

h i
¼ 0. (13)

ks0 should be chosen so that the inversion of Dp þ ks0Ks is well conditioned and ks0oks.
To optimize the support location a numerical procedure may be used based on the location alone. Since the

minimum support stiffness at a given location may be obtained using the above procedure, the optimum
location is calculated by minimising support stiffness directly. Alternatively, the support location that gives
zero slopes at the supports of the fundamental mode shape may be estimated using Eq. (8). These slopes may
be combined to find the zeros of the single objective function

J xs; ys

� �
¼

XN

n¼1

qn

qfn

qx

����
x¼xs
y¼ys

 !2

þ
XN

n¼1

qn

qfn

qy

����
x¼xs
y¼ys

 !2

, (14)

where q is the normalized mode shape and is a function of the support location. This mode shape is the
eigenvector corresponding to the optimum support stiffness from Eq. (10). Note that the mode shape slopes
are proportional to the natural frequency gradients through Eq. (7) and give the direction to the optimum
location.

5. Finite element models

The finite element method may also be described using admissible functions, and this section highlights
some of the implementation details required. In the finite element method the displacement within each
element is approximated using shape functions. This will be demonstrated using rectangular plate elements,
but other formulations could be used. The plate is modelled using rectangular finite elements, with dimensions
(a, b) and four nodes, shown in Fig. 1. The ith node has three dof, namely out of plane displacement, wi, and
two rotations about the x and y axes, yxi and yyi. The elements and shape functions used here are given by
Dawe [18] in Section 11.3. If the coordinates of the centre of the element are (xe, ye), then the transverse
displacement at location (x, y) within the element, given by w(x, y), is approximated using the shape functions
Njðx; ZÞ as

wðx; yÞ ¼ N1ðx; ZÞ N2ðx; ZÞ . . .N12ðx; ZÞ½ �

w1

yx1

yy1

w2

..

.

yy4

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;
, (15)
Fig. 1. The rectangular plate element. The numbers correspond to nodes.
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where

x ¼
x� xe

a
; Z ¼

y� ye

b
.

Dawe [18] gives the shape functions explicitly.
The mass and stiffness matrices for the plate, Mp and Kp, are computed using the standard expressions for

the kinetic and potential energy [18]. The kinetic and potential energy for each element is estimated, based on
the approximation given in Eq. (15). This gives the element mass and stiffness matrices that are then assembled
into the global matrices.

Consider now the addition of a support within an element. Once the element containing the support has
been identified the displacement of the support is approximated as w(xs, ys) using Eq. (15) with,

x ¼
xs � xe

a
; Z ¼

ys � ye

b
.

The elements of the vector v in Eq. (4) then correspond the shape function terms in Eq. (15) placed at the
global dof corresponding to the element dof. Note that only the stiffness sub-matrix corresponding to the dof
for the nodes defining the finite element where the support is located are non-zero. The slopes defined in
Eq. (8) are calculated using qv=qx and qv=qy, whose elements correspond to the derivatives of the shape
functions, for example ðqNj=qxÞ ¼ ð1=aÞðqNj=qxÞ.
6. Numerical examples

The examples will consider the rectangular plate, shown schematically for a single support in Fig. 2, with
length L and width W. The final example considers a slotted plate. The boundary at x ¼ 0 is either clamped or
simply supported and all other edges are free. Most of the results will be given in terms of the non-dimensional
natural frequency l ¼ oL2

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
and the non-dimensional support stiffness g ¼ ksL

2=D, where r is the mass
density and h is the uniform thickness of the plate. D ¼ Eh3=12ð1� n2Þ is the constant flexural rigidity of the
plate, where E is the Young’s modulus and n is the Poisson’s ratio of the material. The finite element method is
used to model the plates based on the element formulation given in the previous section. The computation was
performed using specially written code developed in MATLAB.

A square plate and a rectangular plate with an aspect ratio (defined as L/W) of 1.5 are used, and clamped
and simply supported boundary conditions are modelled. The plate thickness is 3.28mm, the Young’s
modulus is 73.1GN/m2, the mass density is 2821 kg/m3 and Poisson’s ratio is 0.3 [12]. Table 1 gives the
dimensions of the plates, the number of elements for the different case studies and the natural frequencies
(both dimensional and non-dimensional) for the unsupported plates.
Fig. 2. A uniform rectangular plate with one edge clamped or simply supported with an elastic support.
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Table 1

The dimensions and natural frequencies for the unsupported rectangular plates

Clamped Simply supported

Aspect ratio 1.0 1.5 1.0 1.5

Length, L (m) 0.305 0.305 0.305 0.305

Width, W (m) 0.305 0.203 0.305 0.203

Number elements 10� 10 15� 10 10� 10 15� 10

Natural frequency (Hz)

1 (1B) 30.005 29.854 0 0

2 (1T) 73.555 100.772 57.448 85.115

3 (2B) 184.394 185.761 128.987 128.794

Non-dimensional natural frequency

1 (1B) 3.4710 3.4535 0 0

2 (1T) 8.5088 11.6573 6.6457 9.8461

3 (2B) 21.3307 21.4889 14.9213 14.8989

1B and 2B represent the first and second bending modes, and 1T the first torsional mode.

M.I. Friswell, D. Wang / Journal of Sound and Vibration 301 (2007) 665–677 671
6.1. One elastic support on the free edge

An elastic point support along the free edge opposite to the clamped or simply supported edge can be used
to increase the fundamental frequency of the rectangular plate. Because of the symmetry, the requirement of
the zero slope of the fundamental mode shape at the support in the y direction is readily satisfied by locating
the support at the midpoint of the free edge. Because the support is located on the nodal line of the second
mode, the first natural frequency (corresponding to the first bending mode) can only be increased to the
second natural frequency (corresponding to the first torsional mode) of the unsupported structure [13].
Increasing the support stiffness above the minimum value cannot raise the fundamental natural frequency of
the supported plate due to switching of the mode shape order [11].

Table 2 lists the minimum non-dimensional stiffness required for a rectangular plate with aspect ratios of 1
(a square plate) and 1.5 and the corresponding non-dimensional natural frequencies. As expected, the
minimum support stiffness depends upon the aspect ratio and the constrained edge conditions. Additionally, it
is found that the minimum stiffness for a square plate with the simply supported edge is greater than that with
the edge clamped. This is because the required change in natural frequency is larger for the simply supported
case. Fig. 3 shows the corresponding mode shapes for the simply supported and clamped edges with optimal
support stiffness. By using an elastic support, the fundamental natural frequency is increased to its upper limit
and becomes equal to the torsional mode giving a repeated natural frequency. Note that the mode shapes
corresponding to the repeated natural frequency form a space of dimension 2, and here we have chosen a basis
for this space of mode shapes consisting of a bending mode and a torsional mode.

In this case there is no solution for the simply supported case with aspect ratio 1.5. Even a rigid support
placed at the centre of the free end of the plate only raises the fundamental natural frequency to 78.3Hz
rather than the 85.1Hz required. This highlights that the maximum increase in the fundamental natural
frequency attainable by adding a support at the free edge is limited. Of course this support location is
not optimum for this structure and this is highlighted by the non-zero slope of the mode at the support
location, clearly shown in Fig. 3 for the square plate. The optimum support location for this structure is found
in Section 6.3.

6.2. Two elastic supports on free edge

This example assumes there are two elastic supports with the same stiffness located symmetrically along
the free edge of the plate. The objective is to increase the fundamental natural frequency of the supported
plate to the second natural frequency of the unsupported plate. Fig. 4 shows the variation of the minimum
support stiffness as a function of the distance of the support from the centre for the square plate, for
the clamped and simply supported boundary edges. Clearly the optimum position is not at the centre of the
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Table 2

The minimum support stiffnesses and corresponding natural frequencies for a rectangular plate with a support at the center of the free

edge

Clamped Simply supported

Aspect ratio 1.0 1.5 1.0

Non-dimensional natural frequency

1 (1B) 8.5088 11.6573 6.6457

2 (1T) 8.5088 11.6573 6.6457

3 (2B) 23.7338 27.6186 16.1827

Non-dimensional minimum stiffness, g 23.9606 47.8070 35.7646

1B and 2B represent the first and second bending modes, and 1T the first torsional mode.

(a) (b)

Fig. 3. The first mode shape of the square plate with a single minimum stiffness elastic support: (a) the rear edge clamped; and (b) the rear

edge simply supported.
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plate and Table 3 gives the optimum support location and the minimum non-dimensional stiffness. Fig. 4 also
shows the slope of the fundamental mode shape at the support in the y-direction as the support location is
varied and clearly shows that the slope is zero at the optimum location. Note that because the slopes are
computed using the finite element shape functions the slopes will be continuous at the nodes, but the
curvatures (second derivatives of displacement) will not be continuous. Fig. 5 shows the fundamental
mode shapes corresponding to the optimum support location and stiffness and Table 3 gives the natural
frequencies. There is no solution for the simply supported case with aspect ratio 1.5, for the reasons discussed
in Section 6.1.

6.3. One elastic support on the line of symmetry

It has already been highlighted that rigid supports at the free edge of a rectangular plate with aspect ratio
1.5 and a simply supported edge at x ¼ 0 are not able to raise the fundamental natural frequency to the second
natural frequency of the unsupported plate. Given that the plate is symmetric and that the second mode of the
unsupported plate is a torsional mode, the nodal line of this mode is the axis of symmetry, y ¼ 0. Suppose that
a single flexible support is placed along the axis y ¼ 0. Fig. 6 shows the optimum support stiffness as the
position of the support changes. It is clear that for locations less than 0.54 or greater than 0.96 even a rigid
support is unable to raise the fundamental natural frequency sufficiently. There is also an optimum support
position close to 0.79. Fig. 6 also shows the slope of the fundamental mode shape in the x direction at the
support and clearly shows that the slope is zero at the optimum location. Fig. 6 also shows the results for the
cantilever plate with aspect ratio 1.5 and shows that the minimum stiffness occurs at a support location of
approximately 0.90. Table 4 gives the natural frequencies and support location and stiffness for the optimum
solutions. For completeness Table 4 also shows the results for a square plate (aspect ratio 1).
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Fig. 4. The minimum support stiffness and mode shape slope in the y direction at different positions on the free edge for the square plate

for the clamped (solid) and simply supported (dashed) boundary.

Table 3

The optimum supports and corresponding natural frequencies for a rectangular plate with two symmetric supports on the free edge

Clamped Simply supported

Aspect ratio 1.0 1.5 1.0

Non-dimensional Natural frequency

1 (1B) 8.5088 11.6573 6.6457

2 (1T) 10.9957 16.4054 9.7728

3 (2B) 23.0004 26.9371 18.021

Non-dimensional minimum stiffness, g (� 2) 9.3262 18.2840 11.8846

Optimum non-dimensional position (from centre) 70.284 70.316 70.310

1B and 2B represent the first and second bending modes, and 1T the first torsional mode.

M.I. Friswell, D. Wang / Journal of Sound and Vibration 301 (2007) 665–677 673
6.4. A slotted plate

The final example is a slotted cantilever plate to demonstrate the method on a more general structure
without any lines of symmetry. Estimating the nodal lines of the mode shapes is now difficult. The plate is
square with the same dimensions as that given in Table 1, and modelled with 100 square finite elements. Three
elements are removed to create a slot, as shown in Fig. 7, which gives the first two mode shapes of the
structure. The modes of the unsupported plate are no longer purely bending or purely torsional, and the
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Fig. 6. The minimum support stiffness and mode shape slope in the x-direction at different positions on the line of symmetry for the

rectangular plate with aspect ratio 1.5 for the clamped (solid) and simply supported (dashed) boundary.

(a) (b)

Fig. 5. The first mode shape of the square plate with two minimum stiffness elastic supports: (a) the rear edge clamped; and (b) the rear

edge simply supported.
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Table 4

The optimum supports and corresponding natural frequencies for a rectangular plate with a single support on the plate centre line

Clamped Simply supported

Aspect ratio 1.0 1.5 1.0 1.5

Non-dimensional natural frequency

1 (1B) 8.5088 11.6573 6.6457 9.8461

2 (1T) 8.5088 11.6573 6.5457 9.8461

3 (2B) 23.3674 23.4554 16.1148 15.5690

Non-dimensional minimum stiffness, g 23.6313 36.0017 26.2139 41.2976

Optimum non-dimensional position (x from supported edge) 0.9734 0.9017 0.8711 0.7917

1B and 2B represent the first and second bending modes, and 1T the first torsional mode.

(a) (b)

Fig. 7. The first two mode shapes of the square cantilever plate with a slot. The rear edge is clamped. Mode 1 (left) has natural frequency

29.0178Hz and mode 2 (right) 65.0253Hz.
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natural frequencies have reduced compared to those for the plate without a slot. Fig. 8 shows the support
stiffness required to raise the fundamental natural frequency to 50Hz. For this example a rigid support is
unable to raise the fundamental natural frequency of the supported plate to the second natural frequency of
the unsupported plate. Fig. 8 shows that the minimum support stiffness required is 15.47 kN/m, when the
support is located on the free edge, 12mm from the midpoint of the edge. This location occurs on the nodal
line of the second mode of the unsupported structure and the second natural frequency is unaffected by the
introduction of the support.
7. Conclusions

When a natural frequency of a plate structure needs to be increased, an optimally located flexible support
can achieve a similar effect to a rigid support. In this study, the minimum stiffnesses of the additional supports
are calculated to increase the fundamental natural frequency of the supported plate when one boundary edge
is either clamped or simply supported. Numerical examples confirm the existence of the minimum support
stiffness and verify that the procedure presented can find this minimum stiffness for different boundary
conditions.

The present approach models the structures using the finite element method and may be used in
optimization schemes to design practical supports. If the support location is specified a priori, then the
minimum stiffness required to attain a given natural frequency is immediately obtained. The alternative is to
use optimization methods to minimize the support stiffness and to find the optimum support location.
However the proposed approach is more efficient.
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Fig. 8. A contour plot of the support stiffness required to increase the fundamental natural frequency of the slotted cantilever plate to

50Hz. The thick line represents the clamped edge. The dot represents the optimum position with support stiffness 15.47 kN/m. The

contours are at 16, 18, 20, 25, 30, 40, 50, 70, 100, 200 kN/m.
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